
Solution – Tamalin drum

Figure 1: schematic representation rectangular membrane measuring 
a = 60.0 cm and b = 20.0 cm [1].

1.
Tension T

T = ρ
a
 · c2,	 (1) 

depends on the given surface density ρ
a
 = 2.10 kg/m2 and the still 

unknown wave velocity c (m/s). We start out with the wave equation

1

c2
@2u

@2t
= r2u,

	 (2)

or, written differently,

1

c2
@2u

@2t
=

@2u

@2x
+

@2u

@2y
,
	 (3)

If we assume that x, y and t are independent variables, we can write 
the solution of the wave equation as a product of three independent 
solutions



u(x, y, t) = X(x) · Y (y) · T(t), 	 (4) 

where the function T(t) is not to be confused with the tension in 
the membrane. It is a function solely depending on time. When we 
differentiate the chosen solution u(x, y, y) twice (with respect to every 
parameter x, y and t) and divide by u(x, y, t), we find
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where notation X
xx

 means we have differentiated X(x) twice with 
respect to x, etc. Equation 6 can only yield zero for every combination 
(x,y,t) when the individual terms are constant. Hence we equate every 
term to a constant, k
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in other words,
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and since X(x), Y (y) and T(t) are independent, Xxx

X
, Yyy

y
 and T(t) 

also need to equal a constant
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and
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So now we have the following equations
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The reason we choose k2 is that k is exactly the wave number k = 
(2π)/λ in this case. For each of these three equations, the second 
derivation is directly proportional to itself, which only applies when

X(x) ∝ ei(kx·x+φx),	 (15) 
Y(y) ∝ ei(ky·y+φy),	 (16) 

and

T(t) ∝ ei(ckt+φt),	 (17) 

so the solution may be written as

u(x, y, t) = A · ei(kx·x+φx) · ei(ky·y+φy) · ei(ckt+φt).	 (18) 

We are interested only in the real part of X(x), Y (y) and T(t), so we 
write

U(x, y, t) = ℜ(X(x)) · ℜ(Y (y)) · ℜ(T(t)),	 (19)

and therefore
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where U(x, y, t) is also a solution of the wave equation. The phases 
φ

x
, φ

y
 and φ

t
  were added every time to enable us to meet the 

boundary conditions: 

	 1. U(0, y, t) = 0 for all (y, t) → yielding φ
x
 = π/2,

	 2. U(x, 0, t) = 0 for all (x, t) ! yielding φ
y
 = π/2,

	 3. U(a, y, t) = 0 for all (y, t) ! yielding k
x
 = (n

x
π)/a,

	 4. U(x, b, t) = 0 for all (x, t) ! yielding k
y
 = (n

y
π)/b,

with n
x
  and n

y
 integers. We simply take phase φ

t
 as zero; after all, we 

can start anywhere we want to. Since we want k to be the exact wave 
number (2π)/λ we write
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which yields

2

�
=

r
n2
x

a2
+

n2
y

b2
.
	 (22)



Hence the potential frequencies f = c/λ meeting the boundary 
conditions are 
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with n
x
 and n

y
 integers, 1,2,3,...

Now that we know this, we can answer the questions. Substituting a 
frequency of 100 Hz, n

x
 = n

y
 = 1, and the measurements a = 60.0 cm 

and b = 20.0 cm in equation 23 yields wave velocity c = 37.9(473) 
m/s.

1.
So tension T in the membrane has to be

T = ρ
a
 · c2 = 3,02 · 103 N/m.	 (24)

2.
Modi (3,3) and (9,1) have the exact same frequencies for all 
membranes for which a/b = 3(,00..) is true. This is obvious from 
equation 23. This is an interesting phenomenon; two separate states 
of the membrane have the exact same frequency nevertheless. This 
phenomenon occurs more in nature. These energy states of atoms 
are called ‘degenerate’, in which case we also have two electron 
configurations with the same energy level. Only after we place the 
atoms in a magnetic field we can see that the energy levels are split. 
(Zeeman Effect).
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